Analysis of the transcriptome of adult Dictyocaulus filaria and comparison with Dictyocaulus viviparus, with a focus on molecules involved in host-parasite interactions.

Int J Parasitol. 2014 Jan 30. pii: S0020-7519(14)00025-3. doi: 10.1016/j.ijpara.2013.12.003. [Epub ahead of print]


Parasitic nematodes cause diseases of major economic importance in animals. Key representatives are species of Dictyocaulus (= lungworms), which cause bronchitis (= dictyocaulosis, commonly known as "husk") and have a major adverse impact on the health of livestock. In spite of their economic importance, very little is known about the immunomolecular biology of these parasites. Here, we conducted a comprehensive investigation of the adult transcriptome of Dictyocaulus filaria of small ruminants and compared it with that of Dictyocaulus viviparus of bovids. We then identified a subset of highly transcribed molecules inferred to be linked to host-parasite interactions, including cathepsin B peptidases, fatty-acid and/or retinol-binding proteins, ?-galactoside-binding galectins, secreted protein 6 precursors, macrophage migration inhibitory factors, glutathione peroxidases, a transthyretin-like protein and a type 2-like cystatin. We then studied homologs of D. filaria type 2-like cystatin encoded in D. viviparus and 24 other nematodes representing seven distinct taxonomic orders, with a particular focus on their proposed role in immunomodulation and/or metabolism. Taken together, the present study provides new insights into nematode-host interactions. The findings lay the foundation for future experimental studies and could have implications for designing new interventions against lungworms and other parasitic nematodes. The future characterization of the genomes of Dictyocaulus spp. should underpin these endeavors.


Mangiola S, Young ND, Sternberg PW, Strube C, Korhonen PK, Mitreva M, Scheerlinck JP, Hofmann A, Jex AR, Gasser RB.

Institute Authors

Makedonka Mitreva, Ph.D.